The wonders of flap endonucleases: structure, function, mechanism and regulation.
نویسندگان
چکیده
Processing of Okazaki fragments to complete lagging strand DNA synthesis requires coordination among several proteins. RNA primers and DNA synthesised by DNA polymerase α are displaced by DNA polymerase δ to create bifurcated nucleic acid structures known as 5'-flaps. These 5'-flaps are removed by Flap Endonuclease 1 (FEN), a structure-specific nuclease whose divalent metal ion-dependent phosphodiesterase activity cleaves 5'-flaps with exquisite specificity. FENs are paradigms for the 5' nuclease superfamily, whose members perform a wide variety of roles in nucleic acid metabolism using a similar nuclease core domain that displays common biochemical properties and structural features. A detailed review of FEN structure is undertaken to show how DNA substrate recognition occurs and how FEN achieves cleavage at a single phosphate diester. A proposed double nucleotide unpairing trap (DoNUT) is discussed with regards to FEN and has relevance to the wider 5' nuclease superfamily. The homotrimeric proliferating cell nuclear antigen protein (PCNA) coordinates the actions of DNA polymerase, FEN and DNA ligase by facilitating the hand-off intermediates between each protein during Okazaki fragment maturation to maximise through-put and minimise consequences of intermediates being released into the wider cellular environment. FEN has numerous partner proteins that modulate and control its action during DNA replication and is also controlled by several post-translational modification events, all acting in concert to maintain precise and appropriate cleavage of Okazaki fragment intermediates during DNA replication.
منابع مشابه
Interstrand disulfide crosslinking of DNA bases supports a double nucleotide unpairing mechanism for flap endonucleases.
Flap endonucleases (FENs) are proposed to select their target phosphate diester by unpairing the two terminal nucleotides of duplex. Interstrand disulfide crosslinks, introduced by oxidation of thiouracil and thioguanine bases, abolished the specificity of human FEN1 for hydrolysis one nucleotide into the 5'-duplex.
متن کاملFlap endonucleases pass 5′-flaps through a flexible arch using a disorder-thread-order mechanism to confer specificity for free 5′-ends
Flap endonucleases (FENs), essential for DNA replication and repair, recognize and remove RNA or DNA 5'-flaps. Related to FEN specificity for substrates with free 5'-ends, but controversial, is the role of the helical arch observed in varying conformations in substrate-free FEN structures. Conflicting models suggest either 5'-flaps thread through the arch, which when structured can only accommo...
متن کاملMultiple endonucleases function to repair covalent topoisomerase I complexes in Saccharomyces cerevisiae.
Topoisomerase I plays a vital role in relieving tension on DNA strands generated during replication. However if trapped by camptothecin or other DNA damage, topoisomerase protein complexes may stall replication forks producing DNA double-strand breaks (DSBs). Previous work has demonstrated that two structure-specific nucleases, Rad1 and Mus81, protect cells from camptothecin toxicity. In this s...
متن کاملPredicted function of the vaccinia virus G5R protein
MOTIVATION Of the approximately 200 proteins that have been identified for the vaccinia virus (VACV) genome, many are currently listed as having an unknown function, and seven of these are also found in all other poxvirus genomes that have been sequenced. The G5R protein of VACV is included in this list, and to date, very little is known about this essential and highly conserved protein. Conven...
متن کاملStructural Bioinformatics Predicted function of the vaccinia virus G5R protein
Motivation: Of the approximately 200 proteins that have been identified for the vaccinia virus genome, many are currently listed as having an unknown function, and 7 of these are also found in all other poxvirus genomes that have been sequenced. The G5R protein of vaccinia virus is included in this list, and to date, very little is known about this essential and highly conserved protein. Conven...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Sub-cellular biochemistry
دوره 62 شماره
صفحات -
تاریخ انتشار 2012